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A Solution of Coplanar Waveguide with Air-bridges
Using Complex Images

Amjad A. Omar and Y. Leonard Chow, Member, IEEE

Abstract—A new method is proposed to solve general CPW
circuits including air-bridges. This method generalizes the in-
tegral equation technique to nonplanar structures containing
hybrid electric and magnetic currents. It also exploits the full
wave complex image technique to efficiently calculate the Green’s
functions of this structure. The proposed method, therefore,
offers a substantial reduction in computer time and memory
over many other full wave methods. The accuracy of the pro-
posed method is checked by comparing with available FDTD-
theoretical and experimental results for a CPW band reject fil-
ter. Using only 92 matching points, our method gave very good
agreement.

1. INTRODUCTION

URING the past few years, there has been a growing

interest in coplanar waveguides (CPWs) as transmis-
sion lines suitable for microwave and millimeter wave
frequencies. This is due to the appealing properties of
CPWs such as: 1) In CPWs there is no need to drill via
holes for grounding purposes and for shunt connections
as in microstriplines [1]. 2) In CPWs there is no need to
build excessively thin, and therefore fragile, substrates to
get a higher characteristic impedance (Z,). The reason for
this is that Z, in CPW can be adjusted by changing the
slot to strip width ratio without having to change the sub-
strate thickness [2].

However, the main disadvantages of CPWs are: 1) The
excitation of the parasitic coupled (odd) slotline mode by
the nonsymmetric CPW discontinuities like bends and
T-junctions [3]. This mode propagates at a different ve-
locity from the dominant even CPW mode and causes
more radiation to free space. 2) The lack of theoretical
investigation of many CPW circuits.

A number of researchers studied the CPW discontinu-
ities, like end effects [4]-[6], T-junctions [7], etc. They,
also, used ait-bridges to equate the potentials of the two
ground planes and thus eliminate the coupled slotline
mode.

Several methods were recently applied to the solution
of CPW circuits with air-bridges. Dib et al. [8] and
Bromme et al. [9] used a hybrid technique for solving this
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problem. In this technique the 2N port representation of
the odd and even modes of the CPW circuit without air-
bridges is first obtained using the full wave analysis. Then
the air-bridges are included in this representation in the
form of their quasi-static models.

The only published full wave analysis results on the air-
bridges were reported by Rittweger et al. [10] and Beil-
enhoff ef al. [11]. Rittweger [10] used the FDTD method
to solve for the S-parameters of a CPW band reject filter
with and without air-bridges. Beilenhoff [11] used the
three dimensional finite difference method in the fre-
quency domain to solve for the scattering behavior of the
air-bridges. However, these full wave methods require a
large computer storage capability and are computationally
inefficient.

In this paper, we present an accurate and computation-
ally efficient full wave method for solving general CPW
circuits including the air-bridges. This method uses the
full wave mixed potential integral equation technique [12]
combined with the moment method [13] to solve this
problem. This technique was reported in the literature to
solve planar structures containing hybrid electric and
magnetic currents [14]. However, in this paper, it is ex-
tended to the solution of the planar CPW circuit with the
vertical air-bridges, carrying hybrid currents.

The full wave Green’s functions for this structure are
obtained using the complex image technique [15], which
avoids the time consuming numerical integration of Som-
merfeld integrals and yields a highly convergent set of
images. This set consists of real images which represent
the low frequency solution and are dominant in the near
field, complex images which include the radiation effect,
and finally the surface wave contribution which is domi-
nant in the far field. This will be explained in detail in
Section II-C.

To check the accuracy of the proposed method, it is
applied to study the behavior of a CPW band reject filter
with and without air-bridges. The results obtained are then
compared with published experimental and theoretical re-
suits on this filter. Very good agreement is obtained over
the whole frequency range investigated as will be shown
in Section III.

The theoretical Section II consists of two main parts:
The first part excludes the air-bridges. It explains the for-
mulation of the mixed potential integral equation for CPW
(MPIE), the moment method solution to this MPIE and
the final expressions for the complex image Green’s func-
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tions. The second part includes the air-bridges by modi-
fying the MPIE into a pair of coupled MPIE’s. In Section
III, numerical results for the S-parameters of the band re-
ject filter are shown as compared to previously published
experimental and theoretical results.

II. THEORETICAL FORMULATION

A. Duality Formulation for Converting the CPW into
Parallel Strips

We now formulate the open (i.e. nonshielded) CPW
problem of Fig. 1, where it is assumed that the center strip
and the ground planes are infinitely thin perfect conduc-
tors and that the dielectric is lossless. This problem is
solved using the mixed potential integral equation tech-
nique [12].

The CPW has two slots. Therefore, similar to a slot
antenna, the two slots and the ground plane can be trans-
formed into two equivalent strips without ground plane
through the duality principle [16]. However, because of
the dielectric substrate, the duality principle has to be ap-
plied separately for the upper and lower half spaces as
shown in Fig. 2(a)-(c).

For the upper half space with no dielectric slab, the
transformation by duality is the usual one resulting in an
equivalent full space parallel strips problem of Fig. 2(b).
For the lower half space with a dielectric slab, the trans-
formation results in the full space problem of parallel
strips embedded inside a magnetic slab (characterized by
€0y WrH, With u, = ¢€,) of Fig. 2(c).

On the strip boundaries: 1) The tangential magnetic
fields of the upper and lower subproblems are continuous.
Therefore, the (equivalent) electric current density on the
strips in the upper subproblem must be equal and opposite
to the (equivalent) electric current density in the lower
subproblem. 2) The tangential electric fields in both sub-
problems are continuous. Since each subproblem occu-
pies only a half space, the two conditions above imply:

1A, X [E/(T) — Ex(—T )1} = —A, X E'
on the parallel strips. €))]

Where the half factor is due to the contribution of a half
space. E,, E, are the electric fields on the strips of the
upper and lower subproblems, respectwely, due to the
electric currents on these strips. E is the impressed
E-field. fi; is a unit vector normal to the strips.

The MPIE resulting from (1) is given by

;{n X {jw ” <Z§5,‘> + Eﬁ?) - J(7") dS'

Ssmps

+V ” (GP + GP) o(7) ds'B = A, X E
Ssmps
)

where G, G? are the dyadic Green’s functions for the
magnetic vector potentials in the upper and lower sub-
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Fig. 1. The cross section of a coplanar waveguide.
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Fig. 2. Splitting the CPW problem (without air-bridges) into two parallel
strips subproblems through duality: (a) The original CPW problem. (b) The
upper subproblem in free space. (c) The lower subproblem in a magnetic
slab with g, = €.

problems, respectively. Gf;), Gf) are the Green’s func-
tions for the electric potential of a single point charge ( p)
in the upper and lower subproblems, respectively. This
charge density p(7') is related to the current density

S(r ") by the continuity equation. These Green’s func-
tions are explained in Section II-C.

B. The Moment Method Solution of the MPIE for the
Parallel Strips

Following Harrington [13], the 3-D moment method is
used to solve for the unknown current density (J 5} on the
finite length parallel strips as shown in Fig. 3. Therefore,
J and p in (2) are expanded in terms of a finite number
of pulse basis functions along the strips and satisfy the
edge condition across the strips [17]. These basis fll][lC—
tions were found to give accurate and highly convergen
results for microstriplines [18]. In addition, it is assumed
that J has a negligible transverse component. This as-
sumption was found to be valid for thin strips whose width
does mot exceed N,/20 [18]. This assumption signifi-
cantly reduces the computatlons

After expanding J in (2), Galerkin’s procedure is used
to minimize the error. Thus, the original MPIE reduces
to the following matrix equation:

VAR VAINEEN S 3)

where I¢ is the vector of unknown electric (not magnetic)
current on the parallel strips. V* is the vector of known
electric voltage excitation on “the parallel strips and is
shown in Fig. 3, where the voltage polarity in this figure
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Fig. 3. The voltage source locations on the parallel strips.

parallel strips

will excite the dominant even CPW mode. In addition,
the grounding connections in Fig. 3 are achieved by de-
leting the end charges of the grounded segments [19].
[Z,], [Z,] are the impedance matrices for the upper and
lower subproblems, respectively. In the evaluation of
these impedance matrices, the multi-pipe technique [20]
is used to insure the rapid convergence of the edge sin-
gularities of the charge and current distributions as well
as the singularities in the Green’s functions.

After solving (3), the obtained current on the strips (I¢)
is used to calculate the scattering parameters of the dual
parallel strips problem following an accurate deembed-
ding technique proposed by Mosig [12]. The scattering
parameters of the dual strips problem are the same as those
of the original CPW problem.

C. The Spatial Green’s Functions

For the upper subproblem in free space, in 3-D with
cross section as shown in Fig. 2(b), the spatial Green’s
functions G, and G{" are simply the free space Green’s
functions. However, for the lower subproblem in an in-
homogeneous space, with cross section as shown in Fig.
2(c), the full wave spatial (3-D) Green’s functions G(Z)
and G(z) are obtained using the complex image techmque
[15]. Because of space limitations and the fact that the
technique is well known, this paper only provides the final
expressions of these Green’s functions. The derivations
and the complete expressions are found in [21}.

The duality principle of CPW from Fig. 1 to Fig. 2
indicates that for the lower subproblem in Fig. 2(c), the
Green’s functions need only be evaluated with the source
and field points both located in the center plane between
the magnetic slab surfaces. Fig. 2(c) is redrawn in Fig. 4

to indicate the coordinate system and the fact that only
~ horizontal dipoles are required for CPW.

For a horizontal (x-directed) 3-D electric current dipole
of unit strength embedded in a magnetic slab, the spatial
Green’s functions can be represented as follows [21]:

Glia = Glio + Gilaw + Gila @

GEIZ) = ng) + Gq,sw + Gq,ci (5)
where G is the x-directed magnetic vector potentlal due
to an x- dlrected electric current dipole. qu) is the scalar
potential associated with one charge of the dipole. In par-
ticular, G(fo contains the contributions of the source term
and the quasi-dynamic [22] current images resulting from
the magnetic slab surfaces as shown in Fig. 5. G con-
tains the contribution of the source term only since there

are no quasi-dynamic charge images in the magnetic slab
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Fig. 4. A horizontal current dipole embedded inside a magnetic substrate
(characterized by ¢,, p, p,).
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Fig. 5. The quasi-dynamic current images for the lower subproblem of Fig.
2(c) for the fields 1nside the substrate (K = (1 ~ x,) /(1 + p,).

of Fig. 4. The quasi-dynamic contributions are dominant
in the near field. G%;,, G, ,, are the surface wave con-
tributions which are dominant in the far field. They are
given by

o = ’LOM( 27j) Res;

A, 5w

H(kyp 0)ksp ©®

Gq,sw = Hg kpp p)kpp (7)

47e,
where k,, is the pole location, and the residues Res;, Res,
are given in [21]. Finally, dominating in the intermediate
field, the last terms of (4) and (5), G4 and G, ,, are
given by

o uop«rS

1
ha = —— Fik,)HP(k, p)k, dk, (8)

=) ]Zk

1 {71
S ; €))
4me, J-w j2k,,
where the functions F|(k,,) and F5(k_)) in (8), (9) are given
in [21].
Following [15], each of the functions F| and F, can be
expanded in terms of a sum of exponentials using

Gq, ci =



OMAR AND CHOW: SOLUTION OF COPLANAR WAVEGUIDE WITH AIR-BRIDGES

Prony’s method [23]. The general form of this sum is
LY | a;e’” =, where a;’s and b;’s are both complex. Then,
Sommerfeld’s identity [24] is used to perform the integra-
tions in (8) and (9) analytically. This results in the Green’s
functions of (10) and (11), which may be identified to be
those from a set of complex images having complex am-
plitudes (a; and g, respectively) and complex locations
(z' — jb;and z' — jb}, respectively). i.e.

N —jkri
Porbho e’

¢z, =tk 3 4, 10
A,ci 47T i1 i r, ( )

N —ikrh

1 e N
G, = — al 11
P 4me,i=1 ' rf an

where N =

WON Urobps T =

Vol + z-272'+ jb,‘)2 and similarly for r/.

number of images, k =

D. The Air-Bridge

The CPW problem with air-bridge is shown in Fig. 6.
To include the air-bridges in the formulations, the MPIE
of (2) and the moment method solution of (3) must be
modified as follows:

i) The boundary conditions on the air-bridge: Follow-

ing the procedure outlined in Section II-A, the original .

CPW problem with air-bridge is transformed through
duality into two full space parallel strips subproblems,
with the air-bridge existing only in the upper subproblem,
as shown in Fig. 7. In the upper subproblem, shown in
Fig. 7(b), the air-bridge is made of a perfect magnetic
conductor on which H, vanishes. This requires a magnetic
current to flow on the surface of the air-bridge that cancels
the magnetic field generated by the electric currents of the
strips. This effect must be employed in the modified in-
tegral equation. In addition, the magnetic currents on the
air-bridges produce an electric field which couples to the
electric field on the parallel strips. This effect must also
be included in the modified integral equation. Therefore,
the following two boundary equations must be satisfied to
insure the continuity of E on the strips and the vanishing
of H on the air-bridges:

5 {A, X [Ex(Jy) = Ex(—=T) + Ey(T 01} = —#, x E

on the parallel strips (12)
3 4y X [Hp(J)) + Hy (T} =
on the air-bridges 13)

where I_*f], E‘z and E' were defined in (1). Also, following
Fig. 7(b) in free space, E); is the electric field due to a

magnetic current density J «m ON the air-bridge and is given
in (A1) of the Appendix. Hy is the magnetic field due to
an electric current density J s on the strips and is the dual
of Ey,. H), is the magnetic field due to a magnetic current

density 7”,, _on the air-bridge. The magnetic field I;'M is
the dual of E; given in (2).
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Fig. 6. A 3-D view of the coplanar waveguide with air-bridge.

magnetic air-bridge
upper half space strip

&, M

electric air-bridge
=

W7 —
i K

lower half space
(a) (b) ©
Fig. 7. Splitting the CPW problem with air-bridge into two parallel strips
subproblems through duality: (a) The original CPW problem with air-
bridge. (b) The upper subproblem. (c) The lower subproblem.

ii) Moment method solution of the parallel strips sub-
problems with air-bridges: The obtained Green’s func-

tions for EM, ﬁE and fIM are combined with the original
integral equation (2) to yield a pair of coupled mixed po-
tential integral equations which are solved using the mo-
ment method {13]. For this purpose, the equivalent elec-
tric currents and charges on the strips and the equivalent
magnetic currents and charges on the air-bridges are ex-
panded in terms of a finite number of pulse basis functions
which satisfy the edge conditions on the strips and the air-
bridges [17]. Then Galerkin’s procedure is applied to yield
the following matrix equation:

{M+%lﬂ%”ﬁ}{ﬁ] .
where 1°, V¢, [Z;], [Z;] were defined in (3). I™ is the
magnetic current on the air-bridges. V™ is the magnetic
voltage excitation on the air-bridges which is zero every-
where. [Z™] is the magnetic coupling matrix and is the
dual of [Z,]. [Z™] is the magnetic-electric coupling ma-
trix and is given in (A2) of the Appendix. [Z*"] is the
electric magnetic-coupling matrix which can be obtained
from [Z™] using the following duality relation:

[z) = —[2™]" (15)
where T denotes the transpose of the matrix. As in Section
I1-A, the half factor in (14) is due to the contribution of
a half space.

It is important to mention that the matrices [Z"], [Z™]
and [Z™] in (14) all represent free space couplings and
can therefore be easily computed. Therefore, the air-
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bridges are included in our solution of the CPW circuits
using only a few additional computations.

After solving (14), the electric current on the strips is
used to calculate the S-parameters following the same
method mentioned in Section 1I-B.

III. NumMmERICcAL RESULTS AND DisCuUSSIONS

A. The Accuracy of the Complex Image Green’s
Functions for CPW

Using only 4 complex images, 4 quasi-dynamic images
and two surface wave terms, the complex image Green’s
functions gave less than 1.5% error when compared with
the numerical integration of Sommerfeld integrals at dif-
ferent frequencies and over a large span of distances. The
detailed comparison is shown in [21] and is very similar
to that of the microstripline [15]. The above comparison
indicates that the complex images offer a significant re-
duction in computation time over the numerical integra-
tion of Sommerfeld integrals.

B. The Band Reject Filter

In this section we study the CPW band reject filter
shown in Fig. 8. This filter was designed by Rittweger et
al. [10] to have no transmission at 18 GHz and good
transmission at 36 GHz. The main assumption behind the
design of this fiiter is that the CPW line behaves as a
unimodal transmission line. Under this assumption each
stub acts as a short circuit at f = 18 GHz thereby allowing
no transmission between ports 1 and 2 at this frequency,
while it acts as an open circuit at f = 36 GHz thereby
allowing good transmission at this frequency.

The problem with designing the CPW filter is that the
CPW shunt stubs allow both the dominant even CPW
mode and the parasitic coupled (odd) slotline mode to
propagate. This problem can be solved by the use of air-
bridges which eliminate the coupled slotline mode by
equating the potentials of the two ground planes. The lo-
cations of these air-bridges are shown in Fig. 8.

Before going into the numerical results on this filter, it
is important to mention that only 87 matching points on
the strips and 5 matching points on the air-bridges were
used in obtaining these results. These numbers indicate a
significant reduction in computation time over the FDTD
method of Rittweger et al. [10].

C. Comparison with Rittweger’s Results on the Filter
Without Air-Bridges

Our results for the S-parameters of this filter without
air-bridges are compared with experimental and theoreti-
cal results obtained using the FDTD method [10] as shown
in Fig. 9(a) and (b). Good agreement is obtained over the
whole frequency range investigated bearing in mind that
both theoretical methods do not include the conductor and
the dielectric losses, while the experimental results in-
clude these losses.

It is important to notice that without the air-bridges, the
filter completely fails to meet the desired response of hav-
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Fig. 8. The CPW band reject filter (¢, = 9.8, h
are in pm).

635 pm, the dimensions
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Fig. 9. The S-parameters of the CPW band reject filter, without the air-
bridges, versus frequency. (a) magnitude of §;. (b) magnitude of S,,.

ing no transmission at 18 GHz and good transmission at
36 GHz. The reason for this failure is the excitation of
the coupled slotline mode in the stubs as explained.

D. Comparison with Rittweger’s Results on the Filter
With Air-Bridges

Rittweger [10] provided in his paper the locations and
the lengths of the air-bridges which he used in his calcu-
lations and in the experiment. However, we had to choose,
as well, the width and the height of the air-bridges based
on the criterion explained later. Our results for the
S-parameters of the band reject filter with air-bridges agree
very well with the experimental and the theoretical results
of Rittweger [10] over the whole frequency range inves-
tigated, as shown in Fig. 10(a) and (b). In addition, the
filter resonant frequencies obtained agree well with the
design resonant frequencies. However, the ‘kink’ which
occurs in our results of Fig. 10(a) and (b) around 29 GHz
does not agree with the ‘kink’ in the experimental results
which occurs around 27 GHz. We suspect that this shift
in the kink’s position may be due to the performing of the
experimental measurements with the filter inside a cavity
or a package. The difference in the shapes of the two kinks
may be due to the existence of conductor losses in the
experimental results.

An investigation of the kink in our results revealed that
it is caused by the 90° bends in the shunt stubs. This kink
will, therefore, disappear when straight stubs are used.
This, however, has the disadvantage of increasing the fil-
ter’s size.
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Fig. 10. The S-parameters of the CPW band reject filter, with the air-
bridges, versus frequency. (a) magnitude of S;;. (b) magnitude of S,,;. (%,
=3pum, W, =1 pm, [, = 350 um, d, = 100 um).

Therefore, it can be deduced from the previous results
on the filter with bent stubs that the air-bridges play a vital
role in the operation of this band reject filter. For this
reason, it is expected that the locations and the dimen-
sions of the air-bridges will affect the filter’s characteris-
tics. This is explained below:

i) The effect of the air-bridge width (W,): Our numer-
ical experiments on this filter show that for air-bridge
widths less than 1 pm, the filter resonances agree well
with the design. It is only after W, exceeds 1 pm that the
upper resonant frequency tends to shift downward, while
the lower resonant frequency remains virtually un-
changed, as W, is increased. This is shown in Fig. 11(a)
and (b). This behavior should be expected since an in-
crease in the air-bridge width causes an increase in the
capacitance between the air-bridge and the center strip.
The effect of this capacitance becomes more significant at
higher frequencies. Therefore, the stub lengths become
effectively longer than their actual physical length near
the upper resonant frequency, thereby shifting this reso-
nant frequency downward.

‘The conclusion at this point is that, to achieve the de-
sired response of Fig. 10, W, should be chosen as small
as practically possible, preferably around 1 pm. Below
this width, the filter resonances are virtually invariant giv-
ing the correct resonant frequencies which agree with the
design, while they become dependent on W, above this
limit. The very good agreement obtained in the compari-
sons with Rittweger [10], indicates the correctness of our
choice of the width of the air-bridges.

ii) The effect of the air-bridge height (h,): Fig. 12(a)
and (b) show that an increase in the height of the air-
bridges causes an increase in the upper resonant fre-
quency of this filter while the lower resonant frequency
remains virtually unchanged. The reason for this is that
by increasing k,, the capacitance between the air-bridge
and the center strip decreases. This effect is more signif-
icant at higher frequencies. This will decrease the effec-
tive length of the CPW stubs near the upper resonant fre-
quency, thereby shifting this frequency upward.

In our comparisons with Rittweger [10], we chose &,
= 3 um which is a typical height for these air-bridges.

iii) The effect of the air-bridge length (L,): Our nu-
merical experiments show that the length of the air-
bridges, as defined in Fig. 6, significantly affects the up-
per resonant frequency of the band reject filter, such that
this resonant frequency increases with increasing L, as
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Fig. 11. The effect of the width of the airbridge (W,) on the S-parameters
of the CPW band reject filter. (a) magnitude of §;,. (b) magnitude of Sy;.
(h, = 3 um, [, = 350 pm, d, = 100 pm).
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Fig. 12. The effect of the height of the airbridge (h,) on the S-parameters

of the CPW band reject filter. (a) magnitude of S;,. (b) magnitude of ;.
(W, = 10 pm, I, = 350 pm, d, = 100 pum).
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Fig. 13. The effect of the length of the airbridge (/,) on the S-parameters
of the CPW band reject filter. (a) magnitude of §,,. (b) magnitude of S;.
(W, = 10 pm, h, = 3 um, d, = 100 pm).

shown in Fig. 13(a) and (b). The reason for this is that by
increasing the length of the air-bridges, their inductances
increase, thereby decreasing the net capacitive reactance
between the center strip and the ground plane at the air-
bridge locations. This effect is more significant at higher
frequencies at which each stub becomes effectively shorter
than its actual length. This will shift the upper resonant
frequency of the filter upward while virtually not chang-
ing the lower resonant frequency. It is important to note
that the significance of the length of the air-bridges on the
filter resonances was also reported by Rittweger [10].

iv) The effect of the air-bridge location (d,): It was
numerically found that for values of d, less than 100 um,
the filter’s resonant frequencies agree well with the design
resonant frequencies. Above this limit, the lower and up-
per resonant frequencies tend to shift upward as d,, is in-
creased (i.e. as the air-bridges move farther away from
the CPW line). This is shown in Fig. 14(a) and (b). This
effect was also confirmed by Rittweger [10]. The reason
for this behavior is that by making (d,) larger, the coupled
slotline mode is allowed to propagate for a longer distance
along each stub before being eliminated by the air-bridges.
Since the coupled slotline mode propagates at a higher
speed than the dominant CPW mode, therefore, each stub
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Fig. 14. The effect of the location of the airbridge (d,) on the S-parameters
of the CPW band reject filter. (a) magnitude of S,;. (b) magnitude of S,
(W, = 10 pm, h, = 3 pm, [, = 350 pm).

becomes effectively shorter because of the coupled slot-
line mode. This causes an upward shift in the resonant
frequencies of the filter as (d,) is increased. The impli-
cation is that it is better to choose (d,) as small as possi-
ble, preferably below 100 um, to insure that the resonant
frequencies of the filter occur where they should. This
conclusion was also reached by Rittweger [10]. It is also
important to note that the curves were calculated for wide
air-bridges (W, = 10 um). This causes a small downward
shift in the upper resonant frequency from that of Fig.
10(a) and (b).

IV. CoNCLUSIONS

A new technique for solving general CPW circuits in-
cluding the air-bridges is proposed to solve the problem
of coupled slotline mode excitation in nonsymmetric CPW
circuits. This technique generalizes the integral equation
technique to solve nonplanar structures which contain hy-
brid electric and magnetic currents, such as the CPW with
air-bridges. This generalized integral equation technique,
combined with the moment method which uses the effi-
cient multi-pipes [20] and with the accurate and efficient
complex image Green’s functions, provides a powerful,
accurate and numerically efficient method for solving
CPW circuits and air-bridges. In particular, the complex
image technique avoids the time consuming numerical in-
tegration of Sommerfeld integrals. In addition, the resul-
tant Green’s functions consist of only 4 quasi-dynamic
images, 4 complex images and 2 surface wave terms. This
constitutes at least a 10 fold reduction in computation time
as compared to the numerical integration with less than
1.5% error.

The proposed imethod is tested on a CPW band reject
filter previously solved using the FDTD method. Our
method uses only 87 matching points on the strips and 5
matching points on the air-bridges (resulting in 3 minutes
for each frequency on a 33 MHz 80386 PC) to achieve
the same kind of accuracy obtained using the FDTD
method which is time consuming and requires a large
computer memory. Therefore, the proposed method offers
a significant reduction in computation time and memory
without sacrificing the accuracy.

Our method is then applied to analyze the behavior of
the CPW band reject filter and the effects of the air-
bridges’ locations and dimensions on this behavior. The
conclusion from this analysis is that the existence of the
air-bridges is crucial to the filter and that the filter’s char-
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acteristics significantly depend on the dimensions and lo-
cations of these air-bridges. Therefore, by merely adjust-
ing the air-bridge parameters, it is possible to control the
filter’s characteristics.

APPENDIX
THE ELECTRIC AND MAGNETIC COUPLINGS IN THE AIR-
BRIDGE SUBPROBLEM

_ The electric field due to a magnetic current density
J . in free space is given by
- 1

S e_Jk”' 1 -
= - ik, + — | (J,,, X #)dS" (Al
EM 41(' S'; r {] (] ril ( sm r) ( )

where 7 is a unit vector pointing from the magnetic source
point to the field point. %, is the free space propagation
constant, and S}, is the surface area of the air-bridge seg-
ment m. The magnetic voltage on the air-bridge segment
m due to a unit electric current on the strip segment » is
given by:

Z”’"-_IS S fof e_jkorme['k + 1]( X Frne)
mn At Sf. S,'",, m Fre JKo Fore a, Ve

- 4, dsy, ds, (A2)

where d,, d,, are unit vectors pointing in the direction of
the electric and magnetic currents, trespectively. f,, f,, are
the basis functions of electric segment n and magnetic
segment m, respectively. These basis functions were ex-
plained in Section II-D. 7, is a unit vector pointing from
the electric source point to the magnetic field point, and
S; is the surface area of the strip segment n. Equation
(A2) is integrated analytically to reduce the computation
time.
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